
Package: lsei (via r-universe)
September 8, 2024

Title Solving Least Squares or Quadratic Programming Problems under
Equality/Inequality Constraints

Version 1.3-0

Date 2020-09-07

Description It contains functions that solve least squares linear
regression problems under linear equality/inequality
constraints. Functions for solving quadratic programming
problems are also available, which transform such problems into
least squares ones first. It is developed based on the
'Fortran' program of Lawson and Hanson (1974, 1995), which is
public domain and available at
<http://www.netlib.org/lawson-hanson/>.

Encoding UTF-8

License GPL (>= 2)

URL https://www.stat.auckland.ac.nz/~yongwang/

RoxygenNote 7.1.1

NeedsCompilation yes

Author Yong Wang [aut, cre], Charles L. Lawson [aut], Richard J.
Hanson [aut]

Maintainer Yong Wang <yongwang@auckland.ac.nz>

Date/Publication 2020-09-17 08:20:03 UTC

Repository https://yong3738.r-universe.dev

RemoteUrl https://github.com/cran/lsei

RemoteRef HEAD

RemoteSha 9d6fd620cdf85cb18b83682c202817ec7ba82c37

Contents
hfti . 2
indx . 3

1

http://www.netlib.org/lawson-hanson/
https://www.stat.auckland.ac.nz/~yongwang/

2 hfti

lsei . 4
matMaxs . 6
nnls . 7

Index 10

hfti Least Squares Solution using Householder Transformation

Description

Solves the least squares problem using Householder forward triangulation with column interchanges.
It is an R interface to the HFTI function that is described in Lawson and Hanson (1974, 1995). Its
Fortran implementation is public domain and is available at http://www.netlib.org/lawson-hanson/.

Usage

hfti(a, b, tol = 1e-07)

Arguments

a Design matrix.

b Response vector or matrix.

tol Tolerance for determining the pseudorank.

Details

Given matrix a and vector b, hfti solves the least squares problem:

minimize ||ax− b||.

Value

b first krank elements contains the solution

krank psuedo-rank

rnorm Euclidean norm of the residual vector.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

Lawson and Hanson (1974, 1995). Solving least squares problems. Englewood Cliffs, N.J., Prentice-
Hall.

http://www.netlib.org/lawson-hanson/

indx 3

See Also

lsei, nnls.

Examples

a = matrix(rnorm(10*4), nrow=10)
b = a %*% c(0,1,-1,1) + rnorm(10)
hfti(a, b)

indx Index-finding in a Sorted Vector

Description

For each of given values, indx finds the index of the value in a vector sorted in ascending order that
the given value is barely greater than or equal to.

Usage

indx(x, v)

Arguments

x vector of numeric values, the indices of which are to be found.

v vector of numeric values sorted in ascending order.

Details

For each x[i], the function returns integer j such that

vj ≤ xi < vj+1

where v0 = −∞andvn+1 = ∞.

Value

Returns a vector of integers, that are indices of x-values in vector v.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

Examples

indx(0:6,c(1:5,5))
indx(sort(rnorm(5)),-2:2)

4 lsei

lsei Least Squares and Quadratic Programming under Equality and In-
equality Constraints

Description

These functions can be used for solving least squares or quadratic programming problems under
general equality and/or inequality constraints.

Usage

lsei(a, b, c=NULL, d=NULL, e=NULL, f=NULL, lower=-Inf, upper=Inf)
lsi(a, b, e=NULL, f=NULL, lower=-Inf, upper=Inf)
ldp(e, f)
qp(q, p, c=NULL, d=NULL, e=NULL, f=NULL, lower=-Inf, upper=Inf, tol=1e-15)

Arguments

a Design matrix.

b Response vector.

c Matrix of numeric coefficients on the left-hand sides of equality constraints. If
it is NULL, c and d are ignored.

d Vector of numeric values on the right-hand sides of equality constraints.

e Matrix of numeric coefficients on the left-hand sides of inequality constraints.
If it is NULL, e and f are ignored.

f Vector of numeric values on the right-hand sides of inequality constraints.

lower, upper Bounds on the solutions, as a way to specify such simple inequality constraints.

q Matrix of numeric values for the quadratic term of a quadratic programming
problem.

p Vector of numeric values for the linear term of a quadratic programming prob-
lem.

tol Tolerance, for calculating pseudo-rank in qp.

Details

The lsei function solves a least squares problem under both equality and inequality constraints. It
is an implementation of the LSEI algorithm described in Lawson and Hanson (1974, 1995).

The lsi function solves a least squares problem under inequality constraints. It is an implementa-
tion of the LSI algorithm described in Lawson and Hanson (1974, 1995).

The ldp function solves a least distance programming problem under inequality constraints. It is
an R wrapper of the LDP function which is in Fortran, as described in Lawson and Hanson (1974,
1995).

lsei 5

The qp function solves a quadratic programming problem, by transforming the problem into a least
squares one under the same equality and inequality constraints, which is then solved by function
lsei.

The NNLS and LDP Fortran implementations used internally is downloaded from http://www.
netlib.org/lawson-hanson/.

Given matrices a, c and e, and vectors b, d and f, function lsei solves the least squares problem
under both equality and inequality constraints:

minimize ||ax− b||,

subject to cx = d, ex ≥ f.

Function lsi solves the least squares problem under inequality constraints:

minimize ||ax− b||,

subject to ex ≥ f.

Function ldp solves the least distance programming problem under inequality constraints:

minimize ||x||,

subject to ex ≥ f.

Function qp solves the quadratic programming problem:

minimize
1

2
xT qx+ pTx,

subject to cx = d, ex ≥ f.

Value

A vector of the solution values

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

Lawson and Hanson (1974, 1995). Solving least squares problems. Englewood Cliffs, N.J., Prentice-
Hall.

See Also

nnls,hfti.

http://www.netlib.org/lawson-hanson/
http://www.netlib.org/lawson-hanson/

6 matMaxs

Examples

beta = c(rnorm(2), 1)
beta[beta<0] = 0
beta = beta / sum(beta)
a = matrix(rnorm(18), ncol=3)
b = a %*% beta + rnorm(3,sd=.1)
c = t(rep(1, 3))
d = 1
e = diag(1,3)
f = rep(0,3)
lsei(a, b) # under no constraint
lsei(a, b, c, d) # under eq. constraints
lsei(a, b, e=e, f=f) # under ineq. constraints
lsei(a, b, c, d, e, f) # under eq. and ineq. constraints
lsei(a, b, rep(1,3), 1, lower=0) # same solution
q = crossprod(a)
p = -drop(crossprod(b, a))
qp(q, p, rep(1,3), 1, lower=0) # same solution

Example from Lawson and Hanson (1974), p.140
a = cbind(c(.4302,.6246), c(.3516,.3384))
b = c(.6593, .9666)
c = c(.4087, .1593)
d = .1376
lsei(a, b, c, d) # Solution: -1.177499 3.884770

Example from Lawson and Hanson (1974), p.170
a = cbind(c(.25,.5,.5,.8),rep(1,4))
b = c(.5,.6,.7,1.2)
e = cbind(c(1,0,-1),c(0,1,-1))
f = c(0,0,-1)
lsi(a, b, e, f) # Solution: 0.6213152 0.3786848

Example from Lawson and Hanson (1974), p.171:
e = cbind(c(-.207,-.392,.599), c(2.558, -1.351, -1.206))
f = c(-1.3,-.084,.384)
ldp(e, f) # Solution: 0.1268538 -0.2554018

matMaxs Row or Column Maximum Values of a Matrix

Description

Finds either row or column maximum values of a matrix.

Usage

matMaxs(x, dim = 1)

nnls 7

Arguments

x numeric matrix.

dim =1, for row maximum values; =2, for column maximum values.

Details

Matrix x may contain Inf or -Inf, but not NA or NaN.

Value

Returns a numeric vector with row or column maximum values.

The function is very much the same as using apply(x, 1, max) or apply(x, 2, max), but faster.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

Examples

x = cbind(c(1:4,Inf), 5:1)
matMaxs(x)
matMaxs(x, 2)

nnls Least Squares and Quadratic Programming under Nonnegativity Con-
straints

Description

These functions are particularly useful for solving least squares or quadratic programming problems
when some or all of the solution values are subject to nonnegativity constraint. One may further
restrict the NN-restricted coefficients to have a fixed positive sum.

Usage

nnls(a, b)
pnnls(a, b, k=0, sum=NULL)
pnnqp(q, p, k=0, sum=NULL, tol=1e-20)

Arguments

a Design matrix.

b Response vector.

k Integer, meaning that the first k coefficients are not NN-restricted.

8 nnls

sum = NULL, if NN-restricted coefficients are not further restricted to have a fixed
sum;
= a positive value, if NN-restricted coefficients are further restricted to have a
fixed positive sum.

q Positive semidefinite matrix of numeric values for the quadratic term of a quadratic
programming problem.

p Vector of numeric values for the linear term of a quadratic programming prob-
lem.

tol Tolerance used for calculating pseudo-rank of q.

Details

Function nnls solves the least squares problem under nonnegativity (NN) constraints. It is an
R interface to the NNLS function that is described in Lawson and Hanson (1974, 1995). Its For-
tran implementation is public domain and available at http://www.netlib.org/lawson-hanson/
(with slight modifications by Yong Wang for compatibility with the lastest Fortran compiler.)

Given matrix a and vector b, nnls solves the nonnegativity least squares problem:

minimize ||ax− b||,

subject to x ≥ 0.

Function pnnls also solves the above nonnegativity least squares problem when k=0, but it may
also leave the first k coefficients unrestricted. The output value of k can be smaller than the input
one, if a has linearly dependent columns. If sum is a positive value, pnnls solves the problem by
further restricting that the NN-restricted coefficients must sum to the given value.

Function pnnqp solves the quadratic programming problem

minimize
1

2
xT qx+ pTx,

when only some or all coefficients are restricted by nonnegativity. The quadratic programming
problem is solved by transforming the problem into a least squares one under the same constraints,
which is then solved by function pnnls. Arguments k and sum have the same meanings as for
pnnls.

Functions nnls, pnnls and pnnqp are able to return any zero-valued solution as 0 exactly. This
differs from functions lsei and qp, which may produce very small values for exactly 0s, thanks to
numerical errors.

Value

x Solution

r The upper-triangular matrix Q*a, pivoted by variables in the order of index,
when sum=NULL. If sum > 0, r is for the transformed a.

b The vector Q*b, pivoted by variables in the order of index, when sum=NULL. If
sum > 0, b is for the transformed b.

http://www.netlib.org/lawson-hanson/

nnls 9

index Indices of the columns of r; those unrestricted and in the positive set are first
given, and then those in the zero set.

rnorm Euclidean norm of the residual vector.

mode = 1, successful computation;
= 2, bad dimensions of the problem;
= 3, iteration count exceeded (more than 3 times the number of variables itera-
tions).

k Number of the first few coefficients that are truly not NN-restricted.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

Lawson and Hanson (1974, 1995). Solving Least Squares Problems. Englewood Cliffs, N.J.,
Prentice-Hall.

Dax (1990). The smallest point of a polytope. Journal of Optimization Theory and Applications,
64, pp. 429-432.

Wang (2010). Fisher scoring: An interpolation family and its Monte Carlo implementations. Com-
putational Statistics and Data Analysis, 54, pp. 1744-1755.

See Also

lsei, hfti.

Examples

a = matrix(rnorm(40), nrow=10)
b = drop(a %*% c(0,1,-1,1)) + rnorm(10)
nnls(a, b)$x # constraint x >= 0
pnnls(a, b, k=0)$x # same as nnls(a, b)
pnnls(a, b, k=2)$x # first two coeffs are not NN-constrained
pnnls(a, b, k=2, sum=1)$x # NN-constrained coeffs must sum to 1
pnnls(a, b, k=2, sum=2)$x # NN-constrained coeffs must sum to 2
q = crossprod(a)
p = -drop(crossprod(b, a))
pnnqp(q, p, k=2, sum=2)$x # same solution

pnnls(a, b, sum=1)$x # zeros found exactly
pnnqp(q, p, sum=1)$x # zeros found exactly
lsei(a, b, rep(1,4), 1, lower=0) # zeros not so exact

Index

∗ algebra
hfti, 2
indx, 3
lsei, 4
matMaxs, 6
nnls, 7

∗ array
hfti, 2
indx, 3
lsei, 4
matMaxs, 6
nnls, 7

hfti, 2, 5, 9

indx, 3

ldp (lsei), 4
lsei, 3, 4, 9
lsi (lsei), 4

matMaxs, 6

nnls, 3, 5, 7

pnnls (nnls), 7
pnnqp (nnls), 7

qp (lsei), 4

10

	hfti
	indx
	lsei
	matMaxs
	nnls
	Index

